laboratory experiments on Zenarchopterus to be reported elsewhere; they demonstrate polarotactic behaviour patterns quite distinct from the menotactic orientation observed in the field.

To understand the interaction of such polarotactic and menotactic orientation, field experiments must be carried out at various times of day with different geographical Sun's bearings. Pre-sunrise and post-sunset experiments might isolate the influence of natural evector patterns from the direct effect of the Sun's rays, but further study would be required of the anomalous submarine polarization patterns known to be present at dusk^{8,10,11}.

The question of the mechanism of e-vector perception in a teleost is intriguing. It has been suggested that extraocular dichroic structures might provide the necessary analyser (personal communication from T. Kuroki, 1968), yet the fresh skin and skull over the midbrain region of Zenarchopterus where there is a translucent "window" do not show significant dichroism which might modulate a pineal or neighbouring midbrain photoreceptor.

Fishes, of course, lack rhabdoms whose specific fine structure relative to the orientation of visual pigment chromophores underlies polarized light sensitivity in arthropods and cephalopods, 12-17; nor do they have the macula lutea thought to be responsible for Haidinger's brushes in man.

At the suggestion of Dr Gary Bernard of the Yale Ophthalmology Department we are investigating the possibility that twin cones, which are of unknown function but occur in the retinas of a number of teleosts18,19, Although the might provide an analyser mechanism. fine structure of their receptor membrane is quite different from that of a rhabdom their ordered arrangement in rectangular or oblique patterns in certain fishes²⁰ is strikingly reminiscent of the regular mosaic of rhabdomeres and rhabdoms of arthropod compound eyes21. Thus far light microscopic sections of Zenarchopterus retina prepared in collaboration with Mrs Mabelita Campbell have shown that twin cones are prominently present in regular array. It remains to be shown whether they may provide any basis for e-vector discrimination. Experiments to test this are in progress with Dr Haruo Hashimoto.

This research was supported by a grant from the National Geographic Society and by a US Public Health Service grant. We thank Mr Robert Owen and Mr Peter Wilson, of Koror, Palau, US Trust Territory of the Pacific Islands, for providing facilities for these experiments, Mr Howard Ozer for assistance in carrying out the work, Dr Donn Rosen for identifying the fishes used, and Professor Arthur Hasler for critical comments on the manuscript.

> TALBOT H. WATERMAN RICHARD B. FORWARD, JUN.

Department of Zoology, Yale University, New Haven, Connecticut.

Received April 20; revised July 14, 1970.

- ¹ Kramer, G., Naturwissenschaften, 37, 377 (1950).
- ² Montgomery, K. C., and Heinemann, E. G., Science, 116, 454 (1952).
- ³ Waterman, T. H., Proc. Fifteenth Intern. Cong. Zool. Lond., 537 (1959).
- ⁴ Dill, P. A., thesis, Univ. British Columbia (1965).
- ⁵ Groot, C., Behaviour, Suppl. 14 (Brill, Leiden, 1965).
- Waterman, T. H., Science, 120, 927 (1954).
 Batschelet, E., Statistical Methods for the Analysis of Problems in Animal Orientation (American Institute of Biological Sciences, Washington,

- Waterman, T. H., and Westell, W. E., J. Mar. Res., 15, 149 (1956).
 Waterman, T. H., Amer. Sci., 54, 15 (1966).
 Ivanoff, A., and Waterman, T. H., J. Mar. Res., 16, 255 (1958).
 Waterman, T. H., in Perspectives in Marine Biology (edit. by Buzatti-Traverso, A. A.), 429 (University of California Press, Berkeley, 1958).
- Traverso, A. A.), 429 (University of California Press, Berkeley, 1998).

 12 Waterman, T. H., in The Functional Organization of the Compound Eye (edit. by Bernhard, C. G.), 493 (Pergamon Press, Oxford, 1966).

 13 Eguchl, E., and Waterman, T. H., Z. Zellyorsch., 84, 87 (1968).

 14 Hays, D., and Goldsmith, T. H., Z. Vergl. Physiol., 65, 218 (1969).

 15 Shaw, S. R., Vision Res., 9 (9), 999 (1969); 9 (9), 1031 (1969).

 16 Waterman, T. H., Fernandez, H. R., and Goldsmith, T. H., J. Gen. Physiol., 54, 415 (1969).

- Waterman, T. H., and Fernandez, H. R., Z. Vergl. Physiol., 68, 154 (1970).
 Walls, G. L., The Vertebrate Eye and its Adaptive Radiation (Hafner, New York and London, reprint 1963).
 Marks, W. B., J. Physiol., 178, 14 (1965).
 Engstrom, K., Acta Zool., 44, 1 (1963).
 Eguchi, E., and Waterman, T. H., in The Functional Organization of the Compound Eye (edit. by Bernhard, C. G.), 105 (Pergamon Press, Oxford, 1966).

Retention of a Conditioned Avoidance Response after Metamorphosis in Mealworms

METAMORPHOSIS of holometabolous insects involves extensive reorganization of their nervous systems^{1,2}. In spite of such changes, behavioural modifications can be demonstrated at the adult level after manipulations in the larval stage³⁻⁵. For example, the adult reactions of Nemeritis and Drosophila to chemical cues have been altered by exposure to these cues during the larval stage^{3,4}. One limitation of these experiments, as Thorpe points out, is that the behavioural modification cannot be assessed directly in the larval stage. Using a more formal conditioning procedure, Borrell du Vernay⁵ found that Tenebrio trained to discriminate between surfaces and thus avoid shock in the larval stage showed subsequent savings in relearning the discrimination as adults. Unfortunately, this study did not include controls for such variables as sensitization to shock and familiarization with the test situation.

We report here an unambiguous demonstration of retention though metamorphosis. The first of our two experiments showed that either larval or adult Tenebrio molitor L. could learn a passive avoidance task; the second demonstrated that responses learned by larvae persisted in adults.

The training chamber in both experiments was a uniformly illuminated lucite box $5 \times 7.\overline{5}$ cm in size. The floor was divided into two parts: one with a lucite surface and the other with a copper surface. Copper wires, 7 mm apart, were suspended 1 mm above the copper surface. When an insect bridged the space between the wires and the underlying copper surface, it received shock until it returned to the lucite surface. Insects, selected randomly from stock culture, were isolated for at least 7 days and then individually introduced on to the lucite (safe) surface. The interval between introduction to the lucite surface and the first movement to the copper surface was termed the response latency; an increase in response latency during successive days of training was a measure of learning. Each daily session ended when an insect remained on either surface for 30 min. Fig. 1 summarizes the results from our first experiment. On day 1, for both larvae and adults, the copper surface was not electrified, thereby providing a measure of the preferences of untrained The latency of the first response (from lucite to copper) did not exceed 200 s for larvae or 40 s for adultsall animals had a pretraining preference for the copper surface; the adults and larvae spent 89 and 89.5 per cent respectively of the total time in the chamber on the copper.

On subsequent training days (days 2-6 for larvae and days 2-7 for adults) the copper surface was electrified. As Fig. 1 shows, the latency of the first response increased This increase, however, significantly during training. need not represent only passive avoidance conditioning, but it could be attributed in part to habituation effects or to the fact that the animal sampled shock without actually crossing to the copper surface. During the next 2 days we investigated these alternatives.

On the day after training, no shock was given, but both larvae and adults remained on the lucite surface for the full 30 min (Fig. 1): apparently sampling did not account for the increase in response latency observed during training. Each animal was then left in the apparatus until it had explored both surfaces and remained on

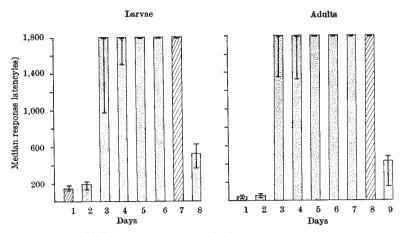


Fig. 1. Median response latency for the first movement of larval and adult *Tenebrio* from lucite to copper surface. Intorquartile intervals are indicated by brackets. Ten animals comprised each group. Stippled columns, copper surface electrified; hatched columns, copper surface not electrified.

one of them for 60 min. On the next day, the copper surface was electrified again, and response latencies decreesed sharply (Fig. 1). Because the pattern of preference built up during training had been reversed by I day without shock, habituation to the lucite surface could not possibly explain the increase in response latencies during training. It is most probable that increased latency reflects true conditioning.

Our second experiment involved the same training procedure, but each animal was trained as a larva and tested as an adult. Control groups were used to determine the degree to which conditioning, habituation, sensitization and/or familiarization in the training sessions with larvae contributed to the behavioural modifications following metamorphosis. One experimental and two control groups were used. The experimental group (trained) consisted of larvae that were trained for at least 10 days, allowed to pupate and tested for retention 3 days after the adult moult. One control group (no treatment) consisted of larvae that were allowed to explore the testing apparatus in the absence of shock, allowed to pupate and tested as adults. The other control group (non-contingent shock) consisted of larvae that were exposed to non-contingent shock in the training chamber, allowed to pupate and then tested as adults. In the non-contingent shock procedure, larvae were exposed to shock-on and shock-off for approximately the same periods of time as were larvae in the trained group, but a lucite barrier prevented movement; they were transferred from one surface to the other by hand.

Retention in adult beetles was measured by two criteria: (1) duration of first period on the safe surface (avoidance latency), and (2) number of errors before the beetle remained on the safe surface for 30 min (trials to learn). On both indices (Table 1), the trained group performed significantly better than either of the control groups: relative to the controls, the trained group showed longer avoidance latencies (P < 0.01) and fewer trials to learn (P < 0.01). (The Mann-Whitney U twotailed test was used.)

Persistence of behavioural modification through a moult is not a new idea, as indicated by previous studies³⁻⁶. Our present study has shown that neither sensitization nor habituation explains retention following a moult. It

Table 1. Median and interquartile range of avoidance latency (s) and trials to learn in adult *Tenebrio* previously trained in the larval stage

Group	n	Avoidance latency	Trials to learn
No treatment	25	41 (33-49)	3 (2-4)
Conditioned	95	$ \begin{array}{c} 41 (33-49) \\ 1,800 (1,800-1,800) \\ 83 (15 \cdot 204) \end{array}\} P < 0.0 $	P < 0.01
Committee	20	P < 0.0	P < 0.01
Non-contingent	31	83 (15- 204)	3 (2-4)

is more significant that persistence of a specific conditioned response survives the extensive reorganization of the central nervous system during the pupal stage. Implicit in these data, and in need of further investigation, is the probability that storage of information occurs in specific portions of the central nervous system which retain their integrity through the pupal and imaginal moults.

In either larva or adult, learning to avoid aversive situations is of obvious advantage to the individual insect; certainly such behavioural plasticity would be favoured by natural selection. In this kind of learning, the general exploratory tendencies of the insect are inhibited by a set of learned clues. The fact that the inhibition persists not only within a single instar but also across the pupal stage suggests that each adult will tend to remain in the area which was most favourable for its own larval growth. Thus adult habitat preferences

are biased by larval experience. This "place learning" is a conservative phenomenon, reinforcing the isolation of those local populations which are concentrated within the more favourable niches of a heterogeneous environment. Place learning could play a part parallel to and/or complementary with the preimaginal conditioning reported by Thorpe and Jones³.

This work was supported in part by funds from the Arts and Sciences Research Fund, the National Institutes of Health and the National Science Foundation.

Note added in proof. Shortly after we submitted this manuscript, an article on learning in Tenebrio by Borsellino and his co-workers7 came to our attention. In contrast to our passive avoidance procedure, the Borsellino study used maze learning; it was satisfying to find that retention over metamorphosis occurred with both types of conditioning. JOHN C. SOMBERG

GEORGE M. HAPP ALLEN M. SCHNEIDER

Departments of Biology and Psychology, New York University, Bronx, NY 10453.

Received May 14, 1970.

- Bullock, T. H., and Horridge, G. A., Structure and Function in the Nervous Systems of Invertebrates (Freeman, San Francisco, 1965).
 Edwards, J. S., in Advances in Insect Physiology (edit. by Beament, J. W. L., Treherne, J. E., and Wigglesworth, V. B.), 6, 98 (Academic Press, London, 1969).
- ^a Thorpe, W. H., and Jones, F. G. W., Proc. Roy. Soc., B, 124, 56 (1937).

- Thorpe, W. H., Proc. Roy. Soc., B, 127, 424 (1939).
 Borrell du Vernay, W., Z. Vergl. Physiol., 30, 84 (1942).
 Jermy, T., Hanson, F. E., and Dethier, V. G., Entomol. Exp. Appl., 11, 211 (1968).
- Borsellino, A., Pierantoni, R., and Schieti-Cavazza, B., Nature, 225, 963

Rhythmic Patterns in Human Interaction

Now that the importance of rhythmicity in biological behavioural functions has been recognized, the traditional distinctions between psychology and physiology have had to be reappraised. For example, the regular alternation between mania and depression in manicdepressive psychosis suggests the possibility of underlying rhythmic phsyiological mechanisms¹. Similarly. the temporal structure of social interaction has been investigated and regular patterns have been found?. Chapple³ and others⁴ have suggested a loose analogy between these patterns and biological rhythms. Nobody, however, has analysed the temporal structure of interaction with the perspective and statistical techniques of chronobiologists.